Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 457
Filtrar
1.
J Zoo Wildl Med ; 55(1): 235-247, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38453508

RESUMO

This case series investigates a cluster of deaths in a captive colony of Leschenault's rousettes (Rousettus leschenaultii). Six of seven bats that died between March and September 2021 were diagnosed postmortem with both iron overload (IO) and neoplasia, neither of which have previously been reported in this species. Iron status was assessed via hepatic histopathological grading, hepatic iron concentration, and, in two cases, serum iron concentration. On histopathological grading, all cases had hemochromatosis except one, which had hemosiderosis. Hepatic iron concentrations did not correlate with histopathological grading. Neoplasms in these six bats included hepatocellular carcinoma (HCC; 4), bronchioloalveolar adenocarcinoma (1), pancreatic adenocarcinoma (1), and sarcoma of the spleen and stomach (1). One bat had two neoplasms (HCC and sarcoma of the spleen and stomach). One additional case of HCC in 2018 was identified on retrospective case review. Etiology was investigated to the extent possible in a clinical setting. Nutritional analysis and drinking water testing found oral iron intake within acceptable bounds; however, dietary vitamin C was potentially excessive and may have contributed to IO. Panhepadnavirus PCR testing of liver tissue was negative for all bats. A species-associated susceptibility to IO, as seen in Egyptian fruit bats (Rousettus aegyptiacus), is possible. The high incidence of HCC is suspected to be related to IO; other differentials include viral infection. Causes or contributing factors were not definitively identified for the other neoplasms seen but could include age, inherited risk (given a high level of inbreeding), or an oncogenic virus. Pending further research in this species, it is recommended that keepers of Leschenault's rousettes offer conservative amounts of vitamin C and iron (as for Egyptian fruit bats), submit for postmortem examination any euthanized or found dead, and share records of similar cases.


Assuntos
Adenocarcinoma , Carcinoma Hepatocelular , Quirópteros , Hemocromatose , Neoplasias Hepáticas , Neoplasias Pancreáticas , Sarcoma , Animais , Adenocarcinoma/veterinária , Ácido Ascórbico , Carcinoma Hepatocelular/veterinária , Quirópteros/metabolismo , Hemocromatose/complicações , Hemocromatose/veterinária , Neoplasias Hepáticas/veterinária , Neoplasias Pancreáticas/veterinária , Estudos Retrospectivos , Sarcoma/veterinária
2.
J Virol ; 97(10): e0020523, 2023 10 31.
Artigo em Inglês | MEDLINE | ID: mdl-37728614

RESUMO

IMPORTANCE: A common hypothesis holds that bats (order Chiroptera) are outstanding reservoirs for zoonotic viruses because of a special antiviral interferon (IFN) system. However, functional studies about key components of the bat IFN system are rare. RIG-I is a cellular sensor for viral RNA signatures that activates the antiviral signaling chain to induce IFN. We cloned and functionally characterized RIG-I genes from two species of the suborders Yangochiroptera and Yinpterochiroptera. The bat RIG-Is were conserved in their sequence and domain organization, and similar to human RIG-I in (i) mediating virus- and IFN-activated gene expression, (ii) antiviral signaling, (iii) temperature dependence, and (iv) recognition of RNA ligands. Moreover, RIG-I of Rousettus aegyptiacus (suborder Yinpterochiroptera) and of humans were found to recognize SARS-CoV-2 infection. Thus, members of both bat suborders encode RIG-Is that are comparable to their human counterpart. The ability of bats to harbor zoonotic viruses therefore seems due to other features.


Assuntos
Quirópteros , Receptores do Ácido Retinoico , SARS-CoV-2 , Animais , Humanos , Quirópteros/metabolismo , COVID-19 , Receptores Imunológicos/química , Receptores Imunológicos/genética , Receptores Imunológicos/metabolismo , SARS-CoV-2/fisiologia , Vírus , Receptores do Ácido Retinoico/química , Receptores do Ácido Retinoico/genética , Receptores do Ácido Retinoico/metabolismo
3.
Ecotoxicology ; 32(7): 845-857, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37612563

RESUMO

The St. Lawrence River in Eastern Ontario, Canada, has been a designated an area of concern due to past industrial contamination of sediment in some areas and transport of mercury from tributaries. Previous research using bats as sentinel species identified elevated concentrations of total mercury (THg) in fur of local bats and species-specific variation between little brown bats (Myotis lucifugus) and big brown bats (Eptesicus fuscus). Here, we investigated the mercury exposure pathways for these two species by testing the hypothesis that diet variation, particularly the reliance on aquatic over terrestrial insects, is a determinant of local bat mercury concentrations. We analyzed THg concentration and stable isotope ratios of δ15N and δ13C in fur of little and big brown bats, and in aquatic and terrestrial insects. Big brown bats, especially males, accumulated significantly higher THg concentrations in their fur compared to little brown bats. However, this difference was not related to diet because big brown bats consumed terrestrial insects, which were lower in mercury than aquatic insects, the primary prey for little brown bats. We also evaluated whether fur THg concentrations translate into molecular changes in tissues linked to (methyl)mercury toxicity by quantifying tissue changes in global DNA methylation and mitochondrial DNA abundance. No significant changes in DNA molecular markers were observed in relation to fur THg concentration, suggesting mercury exposure to local bats did not impact molecular level changes at the DNA level. Higher mercury in bats was not associated with local aquatic contamination or genotoxicity in this study area.


Assuntos
Quirópteros , Mercúrio , Masculino , Animais , Quirópteros/metabolismo , Ontário , Mercúrio/análise , Ecossistema , Rios
4.
Tissue Cell ; 83: 102131, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37315504

RESUMO

Artibeus lituratus is one of the most well-known bat species in the Neotropics, probably due to its high abundance and the ability to inhabit urban areas. It plays an important ecological role in the ecosystem due to its ability to disperse seeds, which contributes to the regeneration of degraded areas. Actually, the species has been used as an important experimental model for ecotoxicological studies of the impact of pesticides on male reproduction. Despite that, the reproductive pattern of A. lituratus is still controversial due to inconsistent descriptions of the reproductive cycle. Thus, the aim of the present work was to evaluate the annual variations of the testicular parameters and sperm quality of A. lituratus and analyze their responses to annual variations in abiotic factors in the Cerrado area in Brazil. Testes of five specimens were collected each month for one year (12 sample groups) and submitted to histological, morphometric, and immunohistochemical analyses. Analyses of the sperm quality were also performed. Results demonstrate that A. lituratus presents a continuously active process of spermatogenesis throughout the year, with two significant peaks in spermatogenic production (September-October and March), which indicates a bimodal polyestric pattern of reproduction. These reproductive peaks seem to be related to an increase in proliferation and, consequently, in the number of spermatogonia. Conversely, seasonal variations in testicular parameters are correlated with annual fluctuations in rainfall and photoperiod but not with temperature. In general, the species presents smaller spermatogenic indexes with a similar sperm quantity and quality to other bat species.


Assuntos
Quirópteros , Testículo , Masculino , Animais , Quirópteros/metabolismo , Frutas , Ecossistema , Sementes , Reprodução/fisiologia , Espermatozoides , Estações do Ano
5.
Sci Signal ; 16(787): eadi8744, 2023 05 30.
Artigo em Inglês | MEDLINE | ID: mdl-37253091
6.
Artigo em Inglês | MEDLINE | ID: mdl-36634815

RESUMO

Dynamic epigenetic changes during hibernation occur in some hibernating rodents, but these changes are poorly understood in hibernating bats. Populations of the greater horseshoe bat (Rhinolophus ferrumequinum) in north China hibernate and provide an opportunity to study how epigenetic markers and modifiers differ in the active and torpid states of a chiropteran. We used fluorescence-labeled methylation-sensitive amplified polymorphism (F-MSAP) and qRT-PCR techniques to determine changes in the global DNA methylation levels and mRNA expression levels of methylation-related proteins. These included DNA methyltransferase (DNMTs), methyl-CpG-binding proteins (MBPs, including MBDs, UHRFs, and zinc-finger protein family) in active and torpid R. ferrumequinum. In the torpid state, both the relative global methylation and the relative mRNA expression levels of some DNMTs and MBPs, including dnmt3b and zbtb4, increased significantly compared to the expression levels of these in the active state. These changes may involve methylation or assist in regulation of a particular subset of genes according to hibernation status. This indicates that epigenetic mechanisms may exist and facilitate the hibernation process of R. ferrumequinum.


Assuntos
Quirópteros , Epigênese Genética , Hibernação , Animais , China , Quirópteros/genética , Quirópteros/metabolismo , Hibernação/genética , RNA Mensageiro/genética
7.
J Exp Biol ; 226(2)2023 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-36541225

RESUMO

Mammalian sperm capacitation involves biochemical and physiological changes, such as an increase in intracellular calcium ion concentration ([Ca2+]i), hyperpolarization of the plasma membrane potential and sperm hyperactivation, among others. These changes provide sperm with the ability to fertilize. In the bat Corynorhinus mexicanus, there is an asynchrony between spermatogenesis and sperm storage in the male with the receptivity of the female. For instance, in C. mexicanus, spermatogenesis occurs before the reproductive season. During the reproductive period, sperm are stored in the epididymis for a few months and the testis undergoes a regression, indicating low or almost null sperm production. Therefore, it is unclear whether the elements necessary for sperm fertilization success undergo maturation or preparation during epididymis storage. Here, we characterized pH-sensitive motility hyperactivation and Ca2+ influx in sperm, regulated by alkalinization and progesterone. In addition, by electrophysiological recordings, we registered currents that were stimulated by alkalinization and inhibited by RU1968 (a CatSper-specific inhibitor), strongly suggesting that these currents were evoked via CatSper, a sperm Ca2+-specific channel indispensable for mammalian fertilization. We also found hyperpolarization of the membrane potential, such as in other mammalian species, which increased according to the month of capture, reaching the biggest hyperpolarization during the mating season. In conclusion, our results suggest that C. mexicanus sperm have functional CatSper and undergo a capacitation-like process such as in other mammals, particularly Ca2+ influx and membrane potential hyperpolarization.


Assuntos
Cálcio , Quirópteros , Animais , Masculino , Feminino , Cálcio/metabolismo , Quirópteros/metabolismo , Potenciais da Membrana/fisiologia , Sêmen , Espermatozoides/fisiologia , Motilidade dos Espermatozoides
8.
EMBO J ; 42(4): e111737, 2023 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-36519268

RESUMO

Bat-origin RshSTT182 and RshSTT200 coronaviruses (CoV) from Rhinolophus shameli in Southeast Asia (Cambodia) share 92.6% whole-genome identity with SARS-CoV-2 and show identical receptor-binding domains (RBDs). In this study, we determined the structure of the RshSTT182/200 receptor binding domain (RBD) in complex with human angiotensin-converting enzyme 2 (hACE2) and identified the key residues that influence receptor binding. The binding of the RshSTT182/200 RBD to ACE2 orthologs from 39 animal species, including 18 bat species, was used to evaluate its host range. The RshSTT182/200 RBD broadly recognized 21 of 39 ACE2 orthologs, although its binding affinities for the orthologs were weaker than those of the RBD of SARS-CoV-2. Furthermore, RshSTT182 pseudovirus could utilize human, fox, and Rhinolophus affinis ACE2 receptors for cell entry. Moreover, we found that SARS-CoV-2 induces cross-neutralizing antibodies against RshSTT182 pseudovirus. Taken together, these findings indicate that RshSTT182/200 can potentially infect susceptible animals, but requires further evolution to obtain strong interspecies transmission abilities like SARS-CoV-2.


Assuntos
Enzima de Conversão de Angiotensina 2 , Betacoronavirus , Quirópteros , Glicoproteína da Espícula de Coronavírus , Animais , Humanos , Enzima de Conversão de Angiotensina 2/química , Enzima de Conversão de Angiotensina 2/metabolismo , Quirópteros/metabolismo , Quirópteros/virologia , Especificidade de Hospedeiro , Ligação Proteica , Receptores Virais/química , Receptores Virais/metabolismo , SARS-CoV-2/metabolismo , Betacoronavirus/metabolismo , Betacoronavirus/patogenicidade , Glicoproteína da Espícula de Coronavírus/química , Glicoproteína da Espícula de Coronavírus/metabolismo
9.
Nature ; 612(7941): 748-757, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36477529

RESUMO

Middle East respiratory syndrome coronavirus (MERS-CoV) and several bat coronaviruses use dipeptidyl peptidase-4 (DPP4) as an entry receptor1-4. However, the receptor for NeoCoV-the closest known MERS-CoV relative found in bats-remains unclear5. Here, using a pseudotype virus entry assay, we found that NeoCoV and its close relative, PDF-2180, can efficiently bind to and use specific bat angiotensin-converting enzyme 2 (ACE2) orthologues and, less favourably, human ACE2 as entry receptors through their receptor-binding domains (RBDs) on the spike (S) proteins. Cryo-electron microscopy analysis revealed an RBD-ACE2 binding interface involving protein-glycan interactions, distinct from those of other known ACE2-using coronaviruses. We identified residues 337-342 of human ACE2 as a molecular determinant restricting NeoCoV entry, whereas a NeoCoV S pseudotyped virus containing a T510F RBD mutation efficiently entered cells expressing human ACE2. Although polyclonal SARS-CoV-2 antibodies or MERS-CoV RBD-specific nanobodies did not cross-neutralize NeoCoV or PDF-2180, an ACE2-specific antibody and two broadly neutralizing betacoronavirus antibodies efficiently inhibited these two pseudotyped viruses. We describe MERS-CoV-related viruses that use ACE2 as an entry receptor, underscoring a promiscuity of receptor use and a potential zoonotic threat.


Assuntos
Enzima de Conversão de Angiotensina 2 , Quirópteros , Coronavírus da Síndrome Respiratória do Oriente Médio , Receptores Virais , Internalização do Vírus , Animais , Humanos , Enzima de Conversão de Angiotensina 2/metabolismo , Quirópteros/metabolismo , Quirópteros/virologia , Microscopia Crioeletrônica , Coronavírus da Síndrome Respiratória do Oriente Médio/classificação , Coronavírus da Síndrome Respiratória do Oriente Médio/isolamento & purificação , Coronavírus da Síndrome Respiratória do Oriente Médio/metabolismo , Ligação Proteica , Receptores Virais/metabolismo , Glicoproteína da Espícula de Coronavírus/química , Glicoproteína da Espícula de Coronavírus/metabolismo , Dipeptidil Peptidase 4/metabolismo , Zoonoses Virais
10.
Ecotoxicol Environ Saf ; 243: 113971, 2022 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-35981482

RESUMO

Anticoagulant rodenticides have been widely used to eliminate wild rodents, which as invasive species on remote islands can disturb ecosystems. Since rodenticides can cause wildlife poisoning, it is necessary to evaluate the sensitivity of local mammals and birds to the poisons to ensure the rodenticides are used effectively. The Bonin Islands are an archipelago located 1000 km southeast of the Japanese mainland and are famous for the unique ecosystems. Here the first-generation anticoagulant rodenticide diphacinone has been used against introduced black rats (Rattus rattus). The only land mammal native to the archipelago is the Bonin fruit bat (Pteropus pselaphon), but little is known regarding its sensitivity to rodenticides. In this study, the Egyptian fruit bats (Rousettus aegyptiacus) was used as a model animal for in vivo pharmacokinetics and pharmacodynamics analysis and in vitro enzyme kinetics using their hepatic microsomal fractions. The structure of vitamin K epoxide reductase (VKORC1), the target protein of the rodenticide in the Bonin fruit bat, was predicted from its genome and its binding affinity to rodenticides was evaluated. The Egyptian fruit bats excreted diphacinone slowly and showed similar sensitivity to rats. In contrast, they excreted warfarin, another first-generation rodenticide, faster than rats and recovered from the toxic effect faster. An in silico binding study also indicated that the VKORC1 of fruit bats is relatively tolerant to warfarin, but binds strongly to diphacinone. These results suggest that even chemicals with the same mode of action display different sensitivities in different species: fruit bat species are relatively resistant to warfarin, but vulnerable to diphacinone.


Assuntos
Quirópteros , Rodenticidas , Animais , Anticoagulantes/toxicidade , Quirópteros/metabolismo , Ecossistema , Mamíferos/metabolismo , Fenindiona/análogos & derivados , Ratos , Rodenticidas/toxicidade , Toxicocinética , Vitamina K Epóxido Redutases/genética , Vitamina K Epóxido Redutases/metabolismo , Varfarina/toxicidade
11.
J Comp Neurol ; 530(15): 2762-2781, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35703441

RESUMO

The structure of the mammalian auditory brainstem is evolutionarily highly plastic, and distinct nuclei arrange in a species-dependent manner. Such anatomical variability is present in the superior olivary complex (SOC) and the nuclei of the lateral lemniscus (LL). Due to the structure-function relationship in the auditory brainstem, the identification of individual nuclei supports the understanding of sound processing. Here, we comparatively describe the nucleus arrangement and the expression of functional markers in the auditory brainstem of the two bat species Phyllostomus discolor and Carollia perspicillata. Using immunofluorescent labeling, we describe the arrangement and identity of the SOC and LL nuclei based on the expression of synaptic markers (vesicular glutamate transporter 1 and glycine transporter 2), calcium-binding proteins, as well as the voltage-gated ion channel subunits Kv1.1 and HCN1. The distribution of excitatory and inhibitory synaptic labeling appears similar between both species and matches with that of other mammals. The detection of calcium-binding proteins indicates species-dependent differences and deviations from other mammals. Kv1.1 and HCN1 show largely the same expression pattern in both species, which diverges from other mammals, indicating functional adaptations in the cellular physiology of bat neurons.


Assuntos
Quirópteros , Colículos Inferiores , Complexo Olivar Superior , Animais , Vias Auditivas/fisiologia , Tronco Encefálico/metabolismo , Proteínas de Ligação ao Cálcio/metabolismo , Quirópteros/metabolismo , Colículos Inferiores/metabolismo , Núcleo Olivar/metabolismo
12.
Commun Biol ; 5(1): 409, 2022 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-35505237

RESUMO

RaTG13 is a close relative of SARS-CoV-2, the virus responsible for the COVID-19 pandemic, sharing 96% sequence similarity at the genome-wide level. The spike receptor binding domain (RBD) of RaTG13 contains a number of amino acid substitutions when compared to SARS-CoV-2, likely impacting affinity for the ACE2 receptor. Antigenic differences between the viruses are less well understood, especially whether RaTG13 spike can be efficiently neutralised by antibodies generated from infection with, or vaccination against, SARS-CoV-2. Using RaTG13 and SARS-CoV-2 pseudotypes we compared neutralisation using convalescent sera from previously infected patients or vaccinated healthcare workers. Surprisingly, our results revealed that RaTG13 was more efficiently neutralised than SARS-CoV-2. In addition, neutralisation assays using spike mutants harbouring single and combinatorial amino acid substitutions within the RBD demonstrated that both spike proteins can tolerate multiple changes without dramatically reducing neutralisation. Moreover, introducing the 484 K mutation into RaTG13 resulted in increased neutralisation, in contrast to the same mutation in SARS-CoV-2 (E484K). This is despite E484K having a well-documented role in immune evasion in variants of concern (VOC) such as B.1.351 (Beta). These results indicate that the future spill-over of RaTG13 and/or related sarbecoviruses could be mitigated using current SARS-CoV-2-based vaccination strategies.


Assuntos
COVID-19 , Quirópteros , Animais , COVID-19/terapia , Quirópteros/metabolismo , Humanos , Imunização Passiva , Glicoproteínas de Membrana/metabolismo , Pandemias , SARS-CoV-2/genética , Glicoproteína da Espícula de Coronavírus/genética , Proteínas do Envelope Viral/genética , Soroterapia para COVID-19
13.
Viruses ; 14(2)2022 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-35215944

RESUMO

The innate immunological response in mammals involves a diverse and complex network of many proteins. Over the last years, the tripartite motif-containing protein 5 (TRIM5) and 22 (TRIM22) have shown promise as restriction factors of a plethora of viruses that infect primates. Although there have been studies describing the evolution of these proteins in a wide range of mammals, no prior studies of the TRIM6/34/5/22 gene cluster have been performed in the Chiroptera order. Here, we provide a detailed analysis of the evolution of this gene cluster in several bat genomes. Examination of different yangochiroptera and yinpterochiroptera bat species revealed a dynamic history of gene expansion occurring in TRIM5 and TRIM22 genes. Multiple copies of TRIM5 were found in the genomes of several bats, demonstrating a very low degree of conservation in the synteny of this gene among species of the Chiroptera order. Our findings also reveal that TRIM22 is often found duplicated in yangochiroptera bat species, an evolutionary phenomenon not yet observed in any other lineages of mammals. In total, we identified 31 TRIM5 and 19 TRIM22 amino acids to be evolving under positive selection, with most of the residues being placed in the PRYSPRY domain, known to be responsible for binding to the viral capsid during restriction in the primate orthologous TRIM proteins. Altogether, our results help to shed light on the distinctive role of bats in nature as reservoirs of viruses, many of which have become threatening zoonotic diseases through virus spillover in the last decades.


Assuntos
Quirópteros/genética , Evolução Molecular , Duplicação Gênica , Proteínas com Motivo Tripartido/genética , Sequência de Aminoácidos , Animais , Quirópteros/classificação , Quirópteros/metabolismo , Família Multigênica , Filogenia , Proteínas com Motivo Tripartido/metabolismo
14.
Virology ; 569: 1-12, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35217403

RESUMO

The SARS-CoV-2 (SARS-CoV-2) virus has caused a worldwide pandemic because of the virus's ability to transmit efficiently human-to-human. A key determinant of infection is the attachment of the viral spike protein to the host receptor angiotensin-converting enzyme 2 (ACE2). Because of the presumed zoonotic origin of SARS-CoV-2, there is no practical way to assess the susceptibility of every species to SARS-CoV-2 by direct challenge studies. In an effort to have a better predictive model of animal host susceptibility to SARS-CoV-2, we expressed the ACE2 and/or transmembrane serine protease 2 (TMPRSS2) genes from humans and other animal species in the avian fibroblast cell line, DF1, that is not permissive to infection. We demonstrated that expression of both human ACE2 and TMPRSS2 genes is necessary to support SARS-CoV-2 infection and replication in DF1 and a non-permissive sub-lineage of MDCK cells. Titers of SARS-CoV-2 in these cell lines were comparable to those observed in control Vero cells. To further test the model, we developed seven additional transgenic cell lines expressing the ACE2 and TMPRSS2 derived from Felis catus (cat), Equus caballus (horse), Sus domesticus (pig), Capra hircus (goat), Mesocricetus auratus (Golden hamster), Myotis lucifugus (Little Brown bat) and Hipposideros armiger (Great Roundleaf bat) in DF1 cells. Results demonstrate permissive replication of SARS-CoV-2 in cat, Golden hamster, and goat species, but not pig or horse, which correlated with the results of reported challenge studies. Cells expressing genes from either bat species tested demonstrated temporal replication of SARS-CoV-2 that peaked early and was not sustained. The development of this cell culture model allows for more efficient testing of the potential susceptibility of many different animal species for SARS-CoV-2 and emerging variant viruses.


Assuntos
COVID-19 , Quirópteros , Enzima de Conversão de Angiotensina 2/genética , Animais , Gatos , Quirópteros/metabolismo , Chlorocebus aethiops , Cavalos , SARS-CoV-2/genética , Glicoproteína da Espícula de Coronavírus/genética , Glicoproteína da Espícula de Coronavírus/metabolismo , Suínos , Células Vero
15.
Sci Rep ; 12(1): 971, 2022 01 19.
Artigo em Inglês | MEDLINE | ID: mdl-35046462

RESUMO

Disease results from interactions among the host, pathogen, and environment. Inoculation trials can quantify interactions among these players and explain aspects of disease ecology to inform management in variable and dynamic natural environments. White-nose Syndrome, a disease caused by the fungal pathogen, Pseudogymnoascus destructans (Pd), has caused severe population declines of several bat species in North America. We conducted the first experimental infection trial on the tri-colored bat, Perimyotis subflavus, to test the effect of temperature and humidity on disease severity. We also tested the effects of temperature and humidity on fungal growth and persistence on substrates. Unexpectedly, only 37% (35/95) of bats experimentally inoculated with Pd at the start of the experiment showed any infection response or disease symptoms after 83 days of captive hibernation. There was no evidence that temperature or humidity influenced infection response. Temperature had a strong effect on fungal growth on media plates, but the influence of humidity was more variable and uncertain. Designing laboratory studies to maximize research outcomes would be beneficial given the high costs of such efforts and potential for unexpected outcomes. Understanding the influence of microclimates on host-pathogen interactions remains an important consideration for managing wildlife diseases, particularly in variable environments.


Assuntos
Ascomicetos/fisiologia , Quirópteros/microbiologia , Interações Hospedeiro-Parasita , Microclima , Animais , Composição Corporal , Quirópteros/metabolismo , Feminino , Hibernação , Umidade , Hidrocortisona/metabolismo , Masculino , Temperatura
16.
Dokl Biochem Biophys ; 507(1): 268-272, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36786984

RESUMO

A comparative analysis of the content of free amino acids in the blood plasma of a representative of the bat fauna of the Urals, Myotis dasycneme (Boie, 1825), in seasonal periods of their annual life cycle is presented for the first time. The blood plasma of the pond bats contains a full spectrum of essential amino acids: threonine, valine, lysine, leucine, isoleucine, methionine, phenylalanine, arginine, histidine, and tryptophan. A significant accumulation of metabolically active glucoplastic alanine in the blood of M. dasycneme in the autumn (2.5 times) and winter (2.2 times) periods indicates its role as a low-temperature adaptogen.


Assuntos
Aminoácidos , Quirópteros , Animais , Aminoácidos/metabolismo , Quirópteros/metabolismo , Estações do Ano , Alanina , Leucina , Arginina , Plasma/metabolismo , Tirosina
17.
J Comp Neurol ; 530(9): 1459-1469, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-34957555

RESUMO

Gonadotropin-inhibitory hormone (GnIH, also known RFRP-3 in mammals) is an important regulator of the hypothalamic-pituitary-gonadal axis and downstream reproductive physiology. Substantial species differences exist in the localization of cell bodies producing RFRP-3 and patterns of fiber immunoreactivity in the brain, raising the question of functional differences. Many temperate bat species exhibit unusual annual reproductive patterns. Male bats upregulate spermatogenesis in late spring which is asynchronous with periods of mating in the fall, while females have the physiological capacity to delay their reproductive investment over winter via sperm storage or delayed ovulation/fertilization. Neuroendocrine mechanisms regulating reproductive timing in male and female bats are not well-studied. We provide the first description of RFRP-precursor peptide of GnIH -expression and localization in the brain of any bat using a widespread temperate species (Eptesicus fuscus, big brown bat) as a model. RFRP mRNA expression was detected in the hypothalamus, testes, and ovaries of big brown bats. Cellular RFRP-immunoreactivity was observed within the periventricular nuclei, dorsomedial nucleus of the hypothalamus, arcuate nucleus (Arc), and median eminence (ME). As in other vertebrates, RFRP fiber immunoreactivity was widespread, with the greatest density observed in the hypothalamus, preoptic area, Arc, ME, midbrain, and thalamic nuclei. Putative interactions between RFRP-ir fibers and gonadotropin-releasing hormone (GnRH) cell bodies were observed in 16% of GnRH-immunoreactive cells, suggesting direct regulation of GnRH via RFRP signaling. This characterization of RFRP distribution contributes to a deeper understanding of bat neuroendocrinology, which serves as foundation for manipulative approaches examining changes in reproductive neuropeptide signaling in response to environmental and physiological challenges within, and among, bat species.


Assuntos
Quirópteros , Neuropeptídeos , Animais , Núcleo Arqueado do Hipotálamo/metabolismo , Quirópteros/metabolismo , Feminino , Hormônio Liberador de Gonadotropina/análise , Gonadotropinas/análise , Gonadotropinas/metabolismo , Masculino , Neuropeptídeos/metabolismo
18.
Artigo em Inglês | MEDLINE | ID: mdl-34517130

RESUMO

The most superficial epidermal layer in endotherms is the stratum corneum (SC), which is composed of dead corneocytes embedded in a lipid matrix with free fatty acids, cholesterol, ceramides, and cerebrosides; the lipid composition of the SC determines its permeability to water vapor. Lipids that are more polar, have longer hydrocarbon chains, and are less bulky are often packed in more ordered phase states to slow cutaneous evaporative water loss (CEWL); these lipids also resist transitions to more disordered phases at high ambient temperatures (Ta). In bats, wing and tail membranes (wing patagia and tail uropatagium, respectively) allow powered flight, but increase surface area, and hence CEWL, with implications for survival in arid environments. We captured Pipistrellus kuhlii from an arid habitat and measured the lipid composition of the SC of the plagiopatagium in the wing, the uropatagium, and the non-membranous region (NMR) of the body using thin layer chromatography and reversed phase high performance liquid chromatography coupled with atmospheric pressure photoionization mass spectrometry. The patagia contained more cholesterol and shorter-chained ceramides, and fewer cerebrosides than the NMR, indicating that the lipid phase transition temperature in the patagia is lower than in the NMR. Thus, at moderate Ta the lipids in the SC in all body regions will remain in an ordered phase state, allowing water conservation; but as Ta increases, the lipids in the SC of the patagia will more easily transition into a disordered phase, resulting in increased CEWL from the patagia facilitating efficient heat dissipation in hot environments.


Assuntos
Composição Corporal , Quirópteros/metabolismo , Clima Desértico , Epiderme/metabolismo , Metabolismo dos Lipídeos , Cauda/metabolismo , Perda Insensível de Água , Asas de Animais/metabolismo , Animais , Superfície Corporal , Ceramidas/metabolismo , Cerebrosídeos/metabolismo , Quirópteros/anatomia & histologia , Colesterol/metabolismo , Cromatografia de Fase Reversa , Cromatografia em Camada Delgada , Feminino , Temperatura Alta , Israel , Masculino , Espectrometria de Massas , Permeabilidade , Cauda/anatomia & histologia , Asas de Animais/anatomia & histologia
19.
Mol Biol Evol ; 38(9): 3864-3883, 2021 08 23.
Artigo em Inglês | MEDLINE | ID: mdl-34426843

RESUMO

Dietary adaptation is a major feature of phenotypic and ecological diversification, yet the genetic basis of dietary shifts is poorly understood. Among mammals, Neotropical leaf-nosed bats (family Phyllostomidae) show unmatched diversity in diet; from a putative insectivorous ancestor, phyllostomids have radiated to specialize on diverse food sources including blood, nectar, and fruit. To assess whether dietary diversification in this group was accompanied by molecular adaptations for changing metabolic demands, we sequenced 89 transcriptomes across 58 species and combined these with published data to compare ∼13,000 protein coding genes across 66 species. We tested for positive selection on focal lineages, including those inferred to have undergone dietary shifts. Unexpectedly, we found a broad signature of positive selection in the ancestral phyllostomid branch, spanning genes implicated in the metabolism of all major macronutrients, yet few positively selected genes at the inferred switch to plantivory. Branches corresponding to blood- and nectar-based diets showed selection in loci underpinning nitrogenous waste excretion and glycolysis, respectively. Intriguingly, patterns of selection in metabolism genes were mirrored by those in loci implicated in craniofacial remodeling, a trait previously linked to phyllostomid dietary specialization. Finally, we show that the null model of the widely-used branch-site test is likely to be misspecified, with the implication that the test is too conservative and probably under-reports true cases of positive selection. Our findings point to a complex picture of adaptive radiation, in which the evolution of new dietary specializations has been facilitated by early adaptations combined with the generation of new genetic variation.


Assuntos
Metabolismo dos Carboidratos/genética , Quirópteros/genética , Dieta , Evolução Molecular , Seleção Genética , Adaptação Biológica/genética , Animais , Quirópteros/metabolismo , Comportamento Alimentar
20.
Biol Open ; 10(8)2021 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-34338281

RESUMO

Bats inhabit a variety of climate types, ranging from tropical to temperate zones, and environmental differences may therefore affect the basal metabolic rate (BMR) of bats from different populations. In the present study, we provide novel data on the energetics of whiskered bats (Myotis mystacinus), which is the smallest species within Chiroptera measured to date. We investigated the thermoregulatory strategies of M. mystacinus close to the northern limits of this species' distribution range and compared these data to other vespertilionid bats living in different climates. As mammals living in colder areas experience elevated thermoregulatory costs, often leading to an increase in BMR, we hypothesised that BMR of this northern population of whiskered bats would be higher than that of bats from climates with warm environmental temperatures. From a systematic literature search we obtained BMR estimates (N=47) from 24 species within Vespertilionidae. Our metabolic measurements of M. mystacinus in Norway (body mass of 4.4 g; BMR of 1.48 ml O2 g-1 h-1) were not different from other vespertilionid bats, based on the allometric equation obtained from the systematic literature search. Further, there was no effect of environmental temperature on BMR within Vespertilionidae. How these tiny bats adapt metabolically to high latitude living is thus still an open question. Bats do have a suite of physiological strategies used to cope with the varying climates which they inhabit, and one possible factor could be that instead of adjusting BMR they could express more torpor. This article has an associated First Person interview with the first author of the paper.


Assuntos
Quirópteros/metabolismo , Metabolismo Energético , Adaptação Fisiológica , Animais , Metabolismo Basal , Regulação da Temperatura Corporal , Meio Ambiente , Modelos Teóricos , Especificidade da Espécie
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...